Sciweavers

FSEN
2009
Springer

The Complexity of Reachability in Randomized Sabotage Games

14 years 7 months ago
The Complexity of Reachability in Randomized Sabotage Games
Abstract. We analyze a model of fault-tolerant systems in a probabilistic setting. The model has been introduced under the name of “sabotage games”. A reachability problem over graphs is considered, where a “Runner” starts from a vertex u and seeks to reach some vertex in a target set F while, after each move, the adversary “Blocker” deletes one edge. Extending work by Löding and Rohde (who showed PSpacecompleteness of this reachability problem), we consider the randomized case (a “game against nature”) in which the deleted edges are chosen at random, each existing edge with the same probability. In this much weaker model, we show that, for any probability p and ε > 0, the following problem is again PSpace-complete: Given a game graph with u and F and a probability p in the interval [p − ε, p + ε], is there a strategy for Runner to reach F with probability ≥ p ? Our result extends the PSpace-completeness of Papadimitriou’s “dynamic graph reliability”; t...
Dominik Klein, Frank G. Radmacher, Wolfgang Thomas
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Where FSEN
Authors Dominik Klein, Frank G. Radmacher, Wolfgang Thomas
Comments (0)