For centuries it was thought that bacteria live asocial lives. However, recent discoveries show many species of bacteria communicate in order to perform tasks previously thought to be limited to multicellular organisms. Central to this capability is quorum sensing, whereby organisms detect cell density and use this information to trigger group behaviors. Quorum sensing is used by bacteria in the formation of biofilms, secretion of digestive enzymes and, in the case of pathogenic bacteria, release of toxins or other virulence factors. Indeed, methods to disrupt quorum sensing are currently being investigated as possible treatments for numerous diseases, including cystic fibrosis, epidemic cholera, and methicillin-resistant Staphylococcus aureus. In this paper we demonstrate the evolution of a quorum sensing behavior in populations of digital organisms. Specifically, we show that digital organisms are capable of evolving a strategy to collectively suppress self-replication, when the ...
Benjamin E. Beckmann, Philip K. McKinley