Sciweavers

ICANNGA
2009
Springer

Supporting Scalable Bayesian Networks Using Configurable Discretizer Actuators

14 years 7 months ago
Supporting Scalable Bayesian Networks Using Configurable Discretizer Actuators
We propose a generalized model with configurable discretizer actuators as a solution to the problem of the discretization of massive numerical datasets. Our solution is based on a concurrent distribution of the actuators and uses dynamic memory management schemes to provide a complete scalable basis for the optimization strategy. This prevents the limited memory from halting while minimizing the discretization time and adapting new observations without re-scanning the entire old data. Using different discretization algorithms on publicly available massive datasets, we conducted a number of experiments which showed that using our discretizer actuators with the hellinger’s algorithm results in better performance compared to using conventional discretization algorithms implemented in the Hugin and Weka in terms of memory and computational resources. By showing that massive numerical datasets can be discretized within limited memory and time, these results suggest the integration of our ...
Isaac Olusegun Osunmakinde, Antoine B. Bagula
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Where ICANNGA
Authors Isaac Olusegun Osunmakinde, Antoine B. Bagula
Comments (0)