The latest multi-biometric grand challenge (MBGC 2008) sets up a new experiment in which near infrared (NIR) face videos containing partial faces are used as a probe set and the visual (VIS) images of full faces are used as the target set. This is challenging for two reasons: (1) it has to deal with partially occluded faces in the NIR videos, and (2) the matching is between heterogeneous NIR and VIS faces. Partial face matching is also a problem often confronted in many video based face biometric applications. In this paper, we propose a novel approach for solving this challenging problem. For partial face matching, we propose a local patch based method to deal with partial face data. For heterogeneous face matching, we propose the philosophy of enhancing common features in heterogeneous images while reducing differences. This is realized by using edge-enhancing filters, which at the same time is also beneficial for partial face matching. The approach requires neither learning proced...