Fault-tolerant (FT) distributed protocols (such as group membership, consensus, etc.) represent fundamental building blocks for many practical systems, e.g., the Google File System. Not only does one desire rigor in the protocol design but especially in its verification given the complexity and fallibility of manual proofs. The application of model checking (MC) for protocol verification is attractive with its full automation and rich property language. However, being an exhaustive exploration method, its scalable use is very much constrained by the overall number of different system states. We observe that, although FT distributed protocols usually display a very high degree of symmetry which stems from permuting different processes, MC efforts targeting their automated verification often disregard this symmetry. Therefore, we propose to leverage the framework of symmetry reduction and improve on existing applications of it by specifying so called role-based symmetries. Our seco...