Sciweavers

IH
2009
Springer

Microphone Classification Using Fourier Coefficients

14 years 7 months ago
Microphone Classification Using Fourier Coefficients
Media forensics tries to determine the originating device of a signal. We apply this paradigm to microphone forensics, determining the microphone model used to record a given audio sample. Our approach is to extract a Fourier coefficient histogram of near-silence segments of the recording as the feature vector and to use machine learning techniques for the classification. Our test goals are to determine whether attempting microphone forensics is indeed a sensible approach and which one of the six different classification techniques tested is the most suitable one for that task. The experimental results, achieved using two different FFT window sizes (256 and 2048 frequency coefficients) and nine different thresholds for near-silence detection, show a high accuracy of up to 93.5% correct classifications for the case of 2048 frequency coefficients in a test set of seven microphones classified with linear logistic regression models. This positive tendency motivates further experiments with...
Robert Buchholz, Christian Krätzer, Jana Ditt
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Where IH
Authors Robert Buchholz, Christian Krätzer, Jana Dittmann
Comments (0)