Intended for network-wide dissemination of commands, configurations and code binaries, flooding has been investigated extensively in wireless networks. However, little work has yet been done on low-duty-cycle wireless sensor networks in which nodes stay asleep most of time and wake up asynchronously. In this type of network, a broadcasting packet is rarely received by multiple nodes simultaneously, a unique constraining feature that makes existing solutions unsuitable. Combined with unreliable links, flooding in low-duty-cycle networks is a new challenging issue. In this paper, we introduce Opportunistic Flooding, a novel design tailored for low-duty-cycle networks with unreliable wireless links and predetermined working schedules. The key idea is to make probabilistic forwarding decisions at a sender based on the delay distribution of next-hop nodes. Only opportunistically early packets are forwarded using links outside the energy optimal tree to reduce the flooding delay and red...