Query log analysis has received substantial attention in recent years, in which the click graph is an important technique for describing the relationship between queries and URLs. State-of-the-art approaches based on the raw click frequencies for modeling the click graph, however, are not noise-eliminated. Nor do they handle heterogeneous queryURL pairs well. In this paper, we investigate and develop a novel entropy-biased framework for modeling click graphs. The intuition behind this model is that various query-URL pairs should be treated differently, i.e., common clicks on less frequent but more specific URLs are of greater value than common clicks on frequent and general URLs. Based on this intuition, we utilize the entropy information of the URLs and introduce a new concept, namely the inverse query frequency (IQF), to weigh the importance (discriminative ability) of a click on a certain URL. The IQF weighting scheme is never explicitly explored or statistically examined for any...
Hongbo Deng, Irwin King, Michael R. Lyu