Sciweavers

LATA
2010
Springer

Extending Stochastic Context-Free Grammars for an Application in Bioinformatics

14 years 7 months ago
Extending Stochastic Context-Free Grammars for an Application in Bioinformatics
We extend stochastic context-free grammars such that the probability of applying a production can depend on the length of the subword that is generated from the application and show that existing algorithms for training and determining the most probable parse tree can easily be adapted to the extended model without losses in performance. Furthermore we show that the extended model is suited to improve the quality of predictions of RNA secondary structures. The extended model may also be applied to other fields where SCFGs are used like natural language processing. Additionally some interesting questions in the field of formal languages arise from it.
Frank Weinberg, Markus E. Nebel
Added 28 May 2010
Updated 28 May 2010
Type Conference
Year 2010
Where LATA
Authors Frank Weinberg, Markus E. Nebel
Comments (0)