—Remote atomic memory operations are critical for achieving high-performance synchronization in tightly-coupled systems. Previous approaches to implementing atomic memory operations on high-performance networks have explored providing the primitives necessary to achieve low latency and low host processor overhead. In this paper, we explore the implementation of atomic memory operations with a focus on achieving high message rate while maintaining these other desirable characteristics. We believe that high message rate is a key performance characteristic that will determine the viability of a high-performance network to support future multipetascale systems, especially those that expect to employ a partitioned global address space (PGAS) programming model. As an example, many have proposed using network interface level atomic operations to enhance the performance of the HPCC RandomAccess benchmark. This paper explores several issues relevant to the design of an atomic unit on the netw...
Keith D. Underwood, Michael Levenhagen, K. Scott H