In this paper, we propose a method for robust kernel density estimation. We interpret a KDE with Gaussian kernel as the inner product between a mapped test point and the centroid of mapped training points in kernel feature space. Our robust KDE replaces the centroid with a robust estimate based on M-estimation [1]. The iteratively re-weighted least squares (IRWLS) algorithm for M-estimation depends only on inner products, and can therefore be implemented using the kernel trick. We prove the IRWLS method monotonically decreases its objective value at every iteration for a broad class of robust loss functions. Our proposed method is applied to synthetic data and network traffic volumes, and the results compare favorably to the standard KDE.