Sciweavers

ICASSP
2008
IEEE

Discriminative training by iterative linear programming optimization

14 years 7 months ago
Discriminative training by iterative linear programming optimization
In this paper, we cast discriminative training problems into standard linear programming (LP) optimization. Besides being convex and having globally optimal solution(s), LP programs are well-studied with well-established solutions, and efficient LP solvers are freely available. In practice, however, one may not have complete knowledge of the feasible region since it is constructed from a limited number of competing hypotheses based on the current model — not the final model which, by definition, is not known a priori at the time of hypotheses generation. We investigate an iterative LP optimization algorithm in which an additional constraint on the parameters being optimized is further imposed. Our proposed method is evaluated on the estimation of global and state-dependent stream weights and biases of a multi-stream hidden Markov model system. Results show that the stream weights and biases found by our iterative LP optimization algorithm may give better recognition performance t...
Brian Mak, Benny Ng
Added 30 May 2010
Updated 30 May 2010
Type Conference
Year 2008
Where ICASSP
Authors Brian Mak, Benny Ng
Comments (0)