Prosody is an important cue for identifying dialog acts. In this paper, we show that modeling the sequence of acousticprosodic values as n-gram features with a maximum entropy model for dialog act (DA) tagging can perform better than conventional approaches that use coarse representation of the prosodic contour through acoustic correlates of prosody. We also propose a discriminative framework that exploits preceding context in the form of lexical and prosodic cues from previous discourse segments. Such a scheme facilitates online DA tagging and offers robustness in the decoding process, unlike greedy decoding schemes that can potentially propagate errors. Using only lexical and prosodic cues from 3 previous utterances, we achieve a DA tagging accuracy of 72% compared to the best case scenario with accurate knowledge of previous DA tag, which results in 74% accuracy.