This paper studies how to incorporate side information (such as users’ feedback) in measuring node proximity on large graphs. Our method (ProSIN) is motivated by the well-studied random walk with restart (RWR). The basic idea behind ProSIN is to leverage side information to refine the graph structure so that the random walk is biased towards/away from some specific zones on the graph. Our case studies demonstrate that ProSIN is well-suited in a variety of applications, including neighborhood search, center-piece subgraphs, and image caption. Given the potential computational complexity of ProSIN, we also propose a fast algorithm (Fast-ProSIN) that exploits the smoothness of the graph structures with/without side information. Our experimental evaluation shows that Fast-ProSIN achieves significant speedups (up to 49x) over straightforward implementations.