Sciweavers

ICPR
2008
IEEE

Fuzzy maximum scatter discriminant analysis and its application to face recognition

14 years 7 months ago
Fuzzy maximum scatter discriminant analysis and its application to face recognition
In this paper, a reformative scatter difference discriminant criterion (SDDC) with fuzzy set theory is studied. The scatter difference between between-class and within-class as discriminant criterion is effective to overcome the singularity problem of the withinclass scatter matrix due to small sample size problem occurred in classical Fisher discriminant analysis. However, the conventional SDDC assumes the same level of relevance of each sample to the corresponding class. So, a fuzzy maximum scatter difference analysis (FMSDA) algorithm is proposed, in which the fuzzy knearest neighbor (FKNN) is implemented to achieve the distribution information of original samples, and this information is utilized to redefine corresponding scatter matrices which are different to the conventional SDDC and effective to extract discriminative features from overlapping (outlier) samples. Experiments conducted on FERET face databases demonstrate the effectiveness of the proposed method.
Jianguo Wang, Wankou Yang, Jingyu Yang
Added 30 May 2010
Updated 30 May 2010
Type Conference
Year 2008
Where ICPR
Authors Jianguo Wang, Wankou Yang, Jingyu Yang
Comments (0)