—A large amount of algorithms has recently been designed for the Internet under the assumption that the distance defined by the round-trip delay (RTT) is a metric. Moreover, many of these algorithms (e.g., overlay network construction, routing scheme design, sparse spanner construction) rely on the assumption that the metric has bounded ball growth or bounded doubling dimension. This paper analyzes the validity of these assumptions and proposes a tractable model matching experimental observations. On the one hand, based on Skitter data collected by CAIDA and King matrices of Meridian and P2PSim projects, we verify that the ball growth of the Internet, as well as its doubling dimension, can actually be quite large. Nevertheless, we observed that the doubling dimension is much smaller when restricting the measures to balls of large enough radius. Moreover, by computing the number of balls of radius r required to cover balls of radius R > r, we observed that this number grows with R...