—This paper presents a systematic in-depth study on the existence, importance, and application of stable nodes in peerto-peer live video streaming. Using traces from a real large-scale system as well as analytical models, we show that, while the number of stable nodes is small throughout a whole session, their longer lifespans make them constitute a significant portion in a per-snapshot view of a peer-to-peer overlay. As a result, they have substantially affected the performance of the overall system. Inspired by this, we propose a tiered overlay design, with stable nodes being organized into a tier-1 backbone for serving tier-2 nodes. It offers a highly cost-effective and deployable alternative to proxy-assisted designs. We develop a comprehensive set of algorithms for stable node identification and organization. Specifically, we present a novel structure, Labeled Tree, for the tier-1 overlay, which, leveraging stable peers, simultaneously achieves low overhead and high transmiss...