Our digital universe is growing, creating exploding amounts of data which need to be searched, protected and filtered. String searching is at the core of the tools we use to curb this explosion, such as search engines, network intrusion detection systems, spam filters, and anti-virus programs. But as communication speed grows, our capability to perform string searching in real-time seems to fall behind. Multi-core architectures promise enough computational power to cope with the incoming challenge, but it is still unclear which algorithms and programming models to use to unleash this power. We have parallelized a popular string searching algorithm, Aho-Corasick, on the IBM Cell/B.E. processor, with the goal of performing exact string matching against large dictionaries. In this article we propose a novel approach to fully exploit the DMA-based communication mechanisms of the Cell/B.E. to provide an unprecedented level of aggregate performance with irregular access patterns. We have ...