Range searching is a fundamental problem in computational geometry. The problem involves preprocessing a set of n points in Rd into a data structure, so that it is possible to determine the subset of points lying within a given query range. In approximate range searching, a parameter ε > 0 is given, and for a given query range R the points lying within distance ε · diam(R) of the range’s boundary may be counted or not. In this paper we present three results related to the issue of tradeoffs in approximate range searching. First, we introduce the range sketching problem. Next, we present a spacetime tradeoff for smooth convex ranges, which generalize spherical ranges. Finally, we show how to modify the previous data structure to obtain a space-time tradeoff for simplex ranges. In contrast to existing results, which are based on relatively complex data structures, all three of our results are based on simple, practical data structures. ∗Research supported by the Research Grant...
Sunil Arya, Guilherme Dias da Fonseca, David M. Mo