Abstract. In this paper we provide explicit formulæ to compute bilinear pairings in compressed form. We indicate families of curves where the proposed compressed computation method can be applied and where particularly generalized versions of the Eta and Ate pairings due to Zhao et al. are especially efficient. Our approach introduces more flexibility when trading off computation speed and memory requirement. Furthermore, compressed computation of reduced pairings can be done without any finite field inversions. We also give a performance evaluation and compare the new method with conventional pairing algorithms.
Michael Naehrig, Paulo S. L. M. Barreto, Peter Sch