Wireless Sensor Networks (WSNs) provide an important means of monitoring the physical world, but their ons present challenges to fundamental network services such as routing. In this work we utilize an abstraction based on the theory of identifying codes. This abstraction has been useful in recent literature for a number of important monitoring problems, such as localization and contamination detection. In our case, we use it to provide a joint infrastructure for efficient and robust monitoring and routing in WSNs. Specifically, we provide an efficient and distributed algorithm for generating robust identifying codes with a logarithmic performance guarantee based on a novel reduction to the set k-multicover problem; to the best of our knowledge, this is the first such guarantee for the robust identifying codes problem, which is known to be NP-hard. We also show how this same identifying-code infrastructure provides a natural labeling that can be used for near-optimal routing with ...