The performance of MPI collective operations, such as broadcast and reduction, is heavily affected by network topologies, especially in grid environments. Many techniques to construct efficient broadcast trees have been proposed for grids. On the other hand, recent high performance computing nodes are often equipped with multi-lane network interface cards (NICs), most previous collective communication methods fail to harness effectively. Our new broadcast algorithm for grid environments harnesses almost all downward and upward bandwidths of multi-lane NICs; A message to be broadcast is split into two pieces, which are broadcast along two independent binary trees in a pipelined fashion, and swapped between both trees. The salient feature of our algorithm is generality; it works effectively on both large clusters and grid environments. It can be also applied to nodes with a single NIC, by making multiple sockets share the NIC. Experimentations on a emulated network environment show t...