Many traditional stereo correspondence methods emphasized on utilizing epipolar constraint and ignored the information embedded in inter-epipolar lines. Actually some researchers have already proposed several grid-based algorithms for fully utilizing information embodied in both intra- and inter-epipolar lines. Though their performances are greatly improved, they are very time-consuming. The new graph-cut and believe-propagation methods have made the grid-based algorithms more efficient, but time-consuming still remains a hard problem for many applications. Recently, a tree dynamic programming algorithm is proposed. Though the computation speed is much higher than that of grid-based methods, the performance is degraded apparently. We think that the problem stems from the pixel-based tree construction. Many edges in the original grid are forced to be cut out, and much information embedded in these edges is thus lost. In this paper, a novel line segment based stereo correspondence algori...