Sciweavers

ECCV
2006
Springer

Robust Attentive Behavior Detection by Non-linear Head Pose Embedding and Estimation

15 years 1 months ago
Robust Attentive Behavior Detection by Non-linear Head Pose Embedding and Estimation
We present a new scheme to robustly detect a type of human attentive behavior, which we call frequent change in focus of attention (FCFA), from video sequences. FCFA behavior can be easily perceived by people as temporal changes of human head pose (normally the pan angle). For recognition of this behavior by computer, we propose an algorithm to estimate the head pan angle in each frame of the sequence within a normal range of the head tilt angles. Developed from the ISOMAP, we learn a non-linear head pose embedding space in 2-D, which is suitable as a feature space for person-independent head pose estimation. These features are used in a mapping system to map the high dimensional head images into the 2-D feature space from which the head pan angle is calculated very simply. The non-linear person-independent mapping system is composed of two parts: 1) Radial Basis Function (RBF) interpolation, and 2) an adaptive local fitting technique. The results show that head orientation can be esti...
Nan Hu, Weimin Huang, Surendra Ranganath
Added 16 Oct 2009
Updated 16 Oct 2009
Type Conference
Year 2006
Where ECCV
Authors Nan Hu, Weimin Huang, Surendra Ranganath
Comments (0)