We present confocal stereo, a new method for computing 3D shape by controlling the focus and aperture of a lens. The method is specifically designed for reconstructing scenes with high geometric complexity or fine-scale texture. To achieve this, we introduce the confocal constancy property, which states that as the lens aperture varies, the pixel intensity of a visible in-focus scene point will vary in a sceneindependent way, that can be predicted by prior radiometric lens calibration. The only requirement is that incoming radiance within the cone subtended by the largest aperture is nearly constant. First, we develop a detailed lens model that factors out the distortions in high resolution
Samuel W. Hasinoff, Kiriakos N. Kutulakos