Advances in wireless networks and positioning technologies (e.g., GPS) have enabled new data management applications that monitor moving objects. In such new applications, realtime data analysis such as clustering analysis is becoming one of the most important requirements. In this paper, we present the problem of clustering moving objects in spatial networks and propose a unified framework to address this problem. Due to the innate feature of continuously changing positions of moving objects, the clustering results dynamically change. By exploiting the unique features of road networks, our framework first introduces a notion of cluster block (CB) as the underlying clustering unit. We then divide the clustering process into the continuous maintenance of CBs and periodical construction of clusters with different criteria based on CBs. The algorithms for efficiently maintaining and organizing the CBs to construct clusters are proposed. Extensive experimental results show that our clus...