Algorithms for discrete energy minimization play a fundamental role for low-level vision. Known techniques include graph cuts, belief propagation (BP) and recently introduced tree-reweighted message passing (TRW). So far, the standard benchmark for their comparison has been a 4-connected grid-graph arising in pixel-labelling stereo. This minimization problem, however, has been largely solved: recent work shows that for many scenes TRW finds the global optimum. Furthermore, it is known that a 4-connected grid-graph is a poor stereo model since it does not take occlusions into account. We propose the problem of stereo with occlusions as a new test bed for minimization algorithms. This is a more challenging graph since it has much larger connectivity, and it also serves as a better stereo model. An attractive feature of this problem is that increased connectivity does not result in increased complexity of message passing algorithms. Indeed, one contribution of this paper is to show that s...