Abstract. Human faces are remarkably similar in global properties, including size, aspect ratios, and locations of main features, but can vary considerably in details across individuals, gender, race, or due to facial expression. We propose a novel method for 3D shape recovery of a face from a single image using a single 3D reference model of a different person's face. The method uses the input image as a guide to mold the reference model to reach a desired reconstruction. Assuming Lambertian reflectance and rough alignment of the input image and reference model, we seek shape, albedo, and lighting that best fit the image while preserving the rough structure of the model. We demonstrate our method by providing accurate reconstructions of novel faces overcoming significant differences in shape due to gender, race, and facial expressions.