Sciweavers

FBIT
2007
IEEE

Unsupervised Learning in Spectral Genome Analysis

14 years 6 months ago
Unsupervised Learning in Spectral Genome Analysis
The tree representation as a model for organismal evolution has been in use since before Darwin. However, with the recent unprecedented access to biomolecular data it has been discovered that, especially in the microbial world, individual genes making up the genome of an organism give rise to different and sometimes conflicting evolutionary tree topologies. This discovery calls into question the notion of a single evolutionary tree for an organism and gives rise to the notion of an evolutionary consensus tree based on the evolutionary patterns of the majority of genes in a genome embedded in a network of gene histories. Here we discuss an approach to the analysis of genomic data of multiple genomes using bipartition spectral analysis and unsupervised learning. An interesting observation is that genes within genomes that have evolutionary tree topologies that are in significant conflict with the evolutionary consensus tree of an organism point to possible horizontal gene transfer event...
Lutz Hamel, Neha Nahar, Maria S. Poptsova, Olga Zh
Added 02 Jun 2010
Updated 02 Jun 2010
Type Conference
Year 2007
Where FBIT
Authors Lutz Hamel, Neha Nahar, Maria S. Poptsova, Olga Zhaxybayeva, J. Peter Gogarten
Comments (0)