We introduce a new primitive called Intrusion-Resilient Secret Sharing (IRSS), whose security proof exploits the fact that there exist functions which can be efficiently computed interactively using low communication complexity in k, but not in k − 1 rounds. IRSS is a means of sharing a secret message amongst a set of players which comes with a very strong security guarantee. The shares in an IRSS are made artificially large so that it is hard to retrieve them completely, and the reconstruction procedure is interactive requiring the players to exchange k short messages. The adversaries considered can attack the scheme in rounds, where in each round the adversary chooses some player to corrupt and some function, and retrieves the output of that function applied to the share of the corrupted player. This model captures for example computers connected to a network which can occasionally be infected by malicious software like viruses, which can compute any function on the infected mach...