The bilateral filter is a nonlinear filter that smoothes a signal while preserving strong edges. It has demonstrated great effectiveness for a variety of problems in computer vision and computer graphics, and a fast version has been proposed. Unfortunately, little is known about the accuracy of such acceleration. In this paper, we propose a new signalprocessing analysis of the bilateral filter, which complements the recent studies that analyzed it as a PDE or as a robust statistics estimator. Importantly, this signal-processing perspective allows us to develop a novel bilateral filtering acceleration using a downsampling in space and intensity. This affords a principled expression of the accuracy in terms of bandwidth and sampling. The key to our analysis is to express the filter in a higher-dimensional space where the signal intensity is added to the original domain dimensions. The bilateral filter can then be expressed as simple linear convolutions in this augmented space followed by...