Sciweavers

ECCV
2006
Springer

Accelerated Convergence Using Dynamic Mean Shift

15 years 1 months ago
Accelerated Convergence Using Dynamic Mean Shift
Mean shift is an iterative mode-seeking algorithm widely used in pattern recognition and computer vision. However, its convergence is sometimes too slow to be practical. In this paper, we improve the convergence speed of mean shift by dynamically updating the sample set during the iterations, and the resultant procedure is called dynamic mean shift (DMS). When the data is locally Gaussian, it can be shown that both the standard and dynamic mean shift algorithms converge to the same optimal solution. However, while standard mean shift only has linear convergence, the dynamic mean shift algorithm has superlinear convergence. Experiments on color image segmentation show that dynamic mean shift produces comparable results as the standard mean shift algorithm, but can significantly reduce the number of iterations for convergence and takes much less time.
Kai Zhang, James T. Kwok, Ming Tang
Added 16 Oct 2009
Updated 16 Oct 2009
Type Conference
Year 2006
Where ECCV
Authors Kai Zhang, James T. Kwok, Ming Tang
Comments (0)