Sciweavers

HICSS
2007
IEEE

A Classifier to Evaluate Language Specificity of Medical Documents

14 years 5 months ago
A Classifier to Evaluate Language Specificity of Medical Documents
Consumer health information written by health care professionals is often inaccessible to the consumers it is written for. Traditional readability formulas examine syntactic features like sentence length and number of syllables, ignoring the target audience’s grasp of the words themselves. The use of specialized vocabulary disrupts the understanding of patients with low reading skills, causing a decrease in comprehension. A naïve Bayes classifier for three levels of increasing medical terminology specificity (consumer/patient, novice health learner, medical professional) was created with a lexicon generated from a representative medical corpus. Ninety-six percent accuracy in classification was attained. The classifier was then applied to existing consumer health web pages. We found that only 4% of pages were classified at a layperson level, regardless of the Flesch reading ease scores, while the remaining pages were at the level of medical professionals. This indicates that consume...
Trudi Miller, Gondy Leroy, Samir Chatterjee, Jie F
Added 02 Jun 2010
Updated 02 Jun 2010
Type Conference
Year 2007
Where HICSS
Authors Trudi Miller, Gondy Leroy, Samir Chatterjee, Jie Fan, Brian Thoms
Comments (0)