The problem of pose estimation arises in many areas of computer vision, including object recognition, object tracking, site inspection and updating, and autonomous navigation when scene models are available. We present a new algorithm, called SoftPOSIT, for determining the pose of a 3D object from a single 2D image when correspondences between object points and image points are not known. The algorithm combines the iterative softassign algorithm [Gold 1996, Gold 1998] for computing correspondences and the iterative POSIT algorithm [DeMenthon 1995] for computing object pose under a full-perspective camera model. Our algorithm, unlike most previous algorithms for pose determination, does not have to hypothesize small sets of matches and then verify the remaining image points. Instead, all possible matches are treated identically throughout the search for an optimal pose. The performance of the algorithm is extensively evaluated in Monte Carlo simulations on synthetic data under a variet...