We propose to construct a 3D linear image basis which spans an image space of arbitrary illumination conditions, from images of a moving object observed under a static lighting condition. The key advance is to utilize the object motion which causes illumination variance on the object surface, rather than varying the lighting, and thereby simplifies the environment for acquiring the input images. Since we then need to re-align the pixels of the images so that the same view of the object can be seen, the correspondence between input images must be solved despite the illumination variance. In order to overcome the problem, we adapt the recently introduced geotensity constraint that accurately governs the relationship between four or more images of a moving object. Through experiments we demonstrate that equivalent 3D image basis is indeed computable and available for recognition or image rendering.