Sciweavers

ICDE
2007
IEEE

Aggregate Query Answering on Anonymized Tables

14 years 7 months ago
Aggregate Query Answering on Anonymized Tables
Privacy is a serious concern when microdata need to be released for ad hoc analyses. The privacy goals of existing privacy protection approaches (e.g., -anonymity and -diversity) are suitable only for categorical sensitive attributes. Since applying them directly to numerical sensitive attributes (e.g., salary) may result in undesirable information leakage, we propose privacy goals to better capture the need of privacy protection for numerical sensitive attributes. Complementing the desire for privacy is the need to support ad hoc aggregate analyses over microdata. Existing generalization-based anonymization approaches cannot answer aggregate queries with reasonable accuracy. We present a general framework of permutationbased anonymization to support accurate answering of aggregate queries and show that, for the same grouping, permutation-based techniques can always answer aggregate queries more accurately than generalization-based approaches. We further propose several criteria to op...
Qing Zhang, Nick Koudas, Divesh Srivastava, Ting Y
Added 03 Jun 2010
Updated 03 Jun 2010
Type Conference
Year 2007
Where ICDE
Authors Qing Zhang, Nick Koudas, Divesh Srivastava, Ting Yu
Comments (0)