Sciweavers

ICDM
2007
IEEE

Supervised Learning by Training on Aggregate Outputs

14 years 5 months ago
Supervised Learning by Training on Aggregate Outputs
Supervised learning is a classic data mining problem where one wishes to be be able to predict an output value associated with a particular input vector. We present a new twist on this classic problem where, instead of having the training set contain an individual output value for each input vector, the output values in the training set are only given in aggregate over a number of input vectors. This new problem arose from a particular need in learning on mass spectrometry data, but could easily apply to situations when data has been aggregated in order to maintain privacy. We provide a formal description of this new problem for both classification and regression. We then examine how k-nearest neighbor, neural networks, and support vector machines can be adapted for this problem.
David R. Musicant, Janara M. Christensen, Jamie F.
Added 03 Jun 2010
Updated 03 Jun 2010
Type Conference
Year 2007
Where ICDM
Authors David R. Musicant, Janara M. Christensen, Jamie F. Olson
Comments (0)