— This paper presents a sensor analysis based fault detection approach (which we call SAFDetection) that is used to monitor tightly-coupled multi-robot team tasks. Our approach aims at detecting both physical and logic faults of a robot system with little prior knowledge on the system. We do not need the motion model or a priori knowledge of the possible fault types of the monitored system. Our approach treats the monitored robot system as a black box, with only sensor data available. Thus, we believe the approach is general, and can be used in a wide variety of robot systems performing many different kinds of tasks. Our approach combines data clustering techniques with the generation of a probabilistic state diagram to model the normal operation of the multi-robot system. We have implemented this approach on a physical robot team. This paper presents the results of these experiments, which show that sensor data analyzed from a training phase of normal operation can be used to genera...
Xingyan Li, Lynne E. Parker