— This article addresses the problem of generating timed trajectories and temporally coordinated movements for two wheeled vehicles, when relatively low-level, noisy sensorial information is used to steer action. The generated trajectories have controlled and stable timing (limit cycle type solutions). Incoupling of sensory information enables sensor driven termination of movement. We build on a previously proposed solution in which timed trajectories and sequences of movements were generated as attractor solutions of dynamic systems. We present a novel system composed of two coupled dynamical architectures that temporally coordinate the solutions of these dynamical systems. The coupled dynamics enable synchronization of the different components providing an independence relatively to the specification of their individual parameters. We apply this architecture to generate temporally coordinated trajectories for two vision-guided mobile robots in a non-structured simulated environmen...
Cristina P. Santos, Manuel Ferreira