Hardware Transactional Memory (HTM) systems reflect choices from three key design dimensions: conflict detection, version management, and conflict resolution. Previously proposed HTMs represent three points in this design space: lazy conflict detection, lazy version management, committer wins (LL); eager conflict detection, lazy version management, requester wins (EL); and eager conflict detection, eager version management, and requester stalls with conservative deadlock avoidance (EE). To isolate the effects of these high-level design decisions, we a common framework that abstracts away differences in cache write policies, interconnects, and ISA to compare these three design points. Not surprisingly, the relative performance of these systems depends on the workload. Under light transactional loads they perform similarly, but under heavy loads they differ by up to 80%. None of the systems performs best on all of our benchmarks. We identify seven performance pathologies—interac...
Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Y