– In this paper, we present a hierarchical methodology that learns new walking gaits autonomously while operating in an uncharted environment, such as on the Mars planetary surface or in the remote Antarctica environment. The focus is to maintain persistent forward locomotion along the body axis, while navigating in natural terrain environments. The hierarchical strategy consists of a finite state machine that models the state of leg orientations coupled with a modified evolutionary algorithm to learn necessary leg movement sequences. Locomotion behavior is assessed by monitoring the robot’s progress toward a specified goal location. Details of the methodology are discussed, and experimental results with a sixlegged robot are presented.
Ayanna M. Howard, Lonnie T. Parker