— For the collaborative control of a team of robots, a set of well-suited high-level control algorithms, especially for path planning and measurement scheduling, is essential. The quality of these control algorithms can be significantly increased by considering uncertainties that arise, e.g. from noisy ents or system model abstraction, by incorporating stochastic filters into the control. To develop these kinds of algorithms and to prove their effectiveness, obviously realworld experiments with real world uncertainties are mandatory. Therefore, a test-environment for evaluating algorithms for collaborative control of a team of robots is presented. This test-environment is founded on miniature walking robots with six degrees of freedom. Their novel locomotion concept not only allows them to move in a wide variety of different motion patterns far beyond the possibilities of traditionally employed wheel-based robots, but also to handle real-world conditions like uneven ground or small...
Florian Weissel, Marco F. Huber, Uwe D. Hanebeck