Sciweavers

ACII
2007
Springer

Assessing Sentiment of Text by Semantic Dependency and Contextual Valence Analysis

14 years 7 months ago
Assessing Sentiment of Text by Semantic Dependency and Contextual Valence Analysis
Text is not only an important medium to describe facts and events, but also to effectively communicate information about the writer’s (positive or negative) sentiment underlying an opinion, and an affect or emotion (e.g. happy, fearful, surprised etc.). We consider sentiment assessment and emotion sensing from text as two different problems, whereby sentiment assessment is a prior task to emotion sensing. This paper presents an approach to sentiment assessment, i.e. the recognition of negative or positive sense of a sentence. We perform semantic dependency analysis on the semantic verb frames of each sentence, and apply a set of rules to each dependency relation to calculate the contextual valence of the whole sentence. By employing a domain-independent, rule-based approach, our system is able to automatically identify sentence-level sentiment. Empirical results indicate that our system outperforms another stateof-the-art approach.
Shaikh Mostafa Al Masum, Helmut Prendinger, Mitsur
Added 06 Jun 2010
Updated 06 Jun 2010
Type Conference
Year 2007
Where ACII
Authors Shaikh Mostafa Al Masum, Helmut Prendinger, Mitsuru Ishizuka
Comments (0)