Sciweavers

ACCV
2007
Springer

Coarse-to-Fine Statistical Shape Model by Bayesian Inference

14 years 5 months ago
Coarse-to-Fine Statistical Shape Model by Bayesian Inference
In this paper, we take a predefined geometry shape as a constraint for accurate shape alignment. A shape model is divided in two parts: fixed shape and active shape. The fixed shape is a user-predefined simple shape with only a few landmarks which can be easily and accurately located by machine or human. The active one is composed of many landmarks with complex shape contour. When searching an active shape, pose parameter is calculated by the fixed shape. Bayesian inference is introduced to make the whole shape more robust to local noise generated by the active shape, which leads to a compensation factor and a smooth factor for a coarse-to-fine shape search. This method provides a simple and stable means for online and offline shape analysis. Experiments on cheek and face contour demonstrate the effectiveness of our proposed approach.
Ran He, Stan Z. Li, Zhen Lei, ShengCai Liao
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Where ACCV
Authors Ran He, Stan Z. Li, Zhen Lei, ShengCai Liao
Comments (0)