Recent collision-finding attacks against hash functions such as MD5 and SHA-1 motivate the use of provably collision-resistant (CR) functions in their place. Finding a collision in a provably CR function implies the ability to solve some hard problem (e.g., factoring). Unfortunately, existing provably CR functions make poor replacements for hash functions as they fail to deliver behaviors demanded by practical use. In particular, they are easily distinguished from a random oracle. We initiate an investigation into building hash functions from provably CR functions. As a method for achieving this, we present the Mix-Compress-Mix (MCM) construction; it envelopes any provably CR function H (with suitable regularity properties) between two injective “mixing” stages. The MCM construction simultaneously enjoys (1) provable collision-resistance in the standard model, and (2) indifferentiability from a monolithic random oracle when the mixing stages themselves are indifferentiable from...