This paper proposes and compares two novel schemes for near duplicate image and video-shot detection. The first approach is based on global hierarchical colour histograms, using Locality Sensitive Hashing for fast retrieval. The second approach uses local feature descriptors (SIFT) and for retrieval exploits techniques used in the information retrieval community to compute approximate set intersections between documents using a min-Hash algorithm. The requirements for near-duplicate images vary according to the application, and we address two types of near duplicate definition: (i) being perceptually identical (e.g. up to noise, discretization effects, small photometric distortions etc); and (ii) being images of the same 3D scene (so allowing for viewpoint changes and partial occlusion). We define two shots to be near-duplicates if they share a large percentage of near-duplicate frames. We focus primarily on scalability to very large image and video databases, where fast query proc...