Sciweavers

COLT
2007
Springer

Online Learning with Prior Knowledge

14 years 7 months ago
Online Learning with Prior Knowledge
The standard so-called experts algorithms are methods for utilizing a given set of “experts” to make good choices in a sequential decision-making problem. In the standard setting of experts algorithms, the decision maker chooses repeatedly in the same “state” based on information about how the different experts would have performed if chosen to be followed. In this paper we seek to extend this framework by introducing state information. More precisely, we extend the framework by allowing an experts algorithm to rely on state information, namely, partial information about the cost function, which is revealed to the decision maker before the latter chooses an action. This extension is very natural in prediction problems. For illustration, an experts algorithm, which is supposed to predict whether the next day will be rainy, can be extended to predicting the same given the current temperature. We introduce new algorithms, which attain optimal performance in the new framework, and...
Elad Hazan, Nimrod Megiddo
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Where COLT
Authors Elad Hazan, Nimrod Megiddo
Comments (0)