Sciweavers

CPAIOR
2007
Springer

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs

14 years 5 months ago
YIELDS: A Yet Improved Limited Discrepancy Search for CSPs
Abstract. In this paper, we introduce a Yet ImprovEd Limited Discrepancy Search (YIELDS), a complete algorithm for solving Constraint Satisfaction Problems. As indicated in its name, YIELDS is an improved version of Limited Discrepancy Search (LDS). It integrates constraint propagation and variable order learning. The learning scheme, which is the main contribution of this paper, takes benefit from failures encountered during search in order to enhance the efficiency of variable ordering heuristic. As a result, we obtain a search which needs less discrepancies than LDS to find a solution or to state a problem is intractable. This method is then less redundant than LDS. The efficiency of YIELDS is experimentally validated, comparing it with several solving algorithms: Depth-bounded Discrepancy Search, Forward Checking, and Maintaining Arc-Consistency. Experiments carried out on randomly generated binary CSPs and real problems clearly indicate that YIELDS often outperforms the algorith...
Wafa Karoui, Marie-José Huguet, Pierre Lope
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Where CPAIOR
Authors Wafa Karoui, Marie-José Huguet, Pierre Lopez, Wady Naanaa
Comments (0)