This paper presents a reliable coin recognition system that is based on a registration approach. To optimally align two coins we search for a rotation in order to reach a maximal number of colinear gradient vectors. The gradient magnitude is completely neglected. After a quantization of the gradient directions the computation of the induced similarity measure can be done efficiently in the Fourier domain. The classification is realized with a simple nearest neighbor classification scheme followed by several rejection criteria to meet the demand of a low false positive rate.