Both reactive and deliberative qualities are essential for a good action selection mechanism. We present a model that embodies a hybrid of two very different neural network architectures inside an animat: one that controls their high level deliberative behaviours, such as the selection of sub-goals, and one that provides reactive and navigational capabilities. Animats using this model are evolved in novel and dynamic environments, on complex tasks requiring deliberative behaviours: tasks that cannot be solved by reactive mechanisms alone and which would traditionally have their solutions formulated in terms of search-based planning. Significantly, no a priori information is given to the animats, making explicit forward search through state transitions impossible. The complexity of the problem means that animats must first learn to solve sub-goals without receiving any reward. Animats are shown increasingly complex versions of the task, with the results demonstrating, for the first ...